Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1383110, 2024.
Article in English | MEDLINE | ID: mdl-38650930

ABSTRACT

Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.


Subject(s)
Abatacept , Alleles , Arthritis, Rheumatoid , CD8-Positive T-Lymphocytes , Receptors, Immunologic , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , Male , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Adult , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Middle Aged , Antirheumatic Agents/therapeutic use , Genetic Predisposition to Disease , T-Cell Exhaustion
2.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36282595

ABSTRACT

Therapeutics that inhibit IL-6 at different points in its signaling pathway are in clinical use, yet whether the immunological effects of these interventions differ based on their molecular target is unknown. We performed short-term interventions in individuals with type 1 diabetes using anti-IL-6 (siltuximab) or anti-IL-6 receptor (IL-6R; tocilizumab) therapies and investigated the impact of this in vivo blockade on T cell fate and function. Immune outcomes were influenced by the target of the therapeutic intervention (IL-6 versus IL-6R) and by peak drug concentration. Tocilizumab reduced ICOS expression on T follicular helper cell populations and T cell receptor-driven (TCR-driven) STAT3 phosphorylation. Siltuximab reversed resistance to Treg-mediated suppression and increased TCR-driven phosphorylated STAT3 and production of IL-10, IL-21, and IL-27 by T effectors. Together, these findings indicate that the context of IL-6 blockade in vivo drives distinct T cell-intrinsic changes that may influence therapeutic outcomes.


Subject(s)
Cytokines , Receptors, Antigen, T-Cell , Humans , Cytokines/pharmacology , Signal Transduction , Phosphorylation
3.
Front Immunol ; 13: 935394, 2022.
Article in English | MEDLINE | ID: mdl-35911690

ABSTRACT

Elevated levels and enhanced sensing of the pro-inflammatory cytokine interleukin-6 (IL-6) are key features of many autoimmune and inflammatory diseases. To better understand how IL-6 signaling may influence human T cell fate, we investigated the relationships between levels of components of the IL-6R complex, pSTAT responses, and transcriptomic and translational changes in CD4+ and CD8+ T cell subsets from healthy individuals after exposure to IL-6. Our findings highlight the striking heterogeneity in mbIL-6R and gp130 expression and IL-6-driven pSTAT1/3 responses across T cell subsets. Increased mbIL-6R expression correlated with enhanced signaling via pSTAT1 with less impact on pSTAT3, most strikingly in CD4+ naïve T cells. Additionally, IL-6 rapidly induced expression of transcription factors and surface receptors expressed by T follicular helper cells and altered expression of markers of apoptosis. Importantly, many of the features associated with the level of mbIL-6R expression on T cells were recapitulated both in the setting of tocilizumab therapy and when comparing donor CD4+ T cells harboring the genetic variant, IL6R Asp358Ala (rs2228145), known to alter mbIL-6R expression on T cells. Collectively, these findings should be taken into account as we consider the role of IL-6 in disease pathogenesis and translating IL-6 biology into effective therapies for T cell-mediated autoimmune disease.


Subject(s)
Interleukin-6 , STAT1 Transcription Factor , Signal Transduction , T-Lymphocytes , Apoptosis , Cytokines , Humans , Immune System Diseases/etiology , Immune System Diseases/pathology , Interleukin-6/metabolism , Interleukin-6/pharmacology , STAT1 Transcription Factor/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
4.
J Immunol ; 208(3): 594-602, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35022272

ABSTRACT

The coinhibitory receptor lymphocyte activation gene 3 (LAG-3) is an immune checkpoint molecule that negatively regulates T cell activation, proliferation, and homeostasis. Blockade or deletion of LAG-3 in autoimmune-prone backgrounds or induced-disease models has been shown to exacerbate disease. We observed significantly fewer LAG-3+ CD4 and CD8 T cells from subjects with relapsing-remitting multiple sclerosis (RRMS) and type 1 diabetes. Low LAG-3 protein expression was linked to alterations in mRNA expression and not cell surface cleavage. Functional studies inhibiting LAG-3 suggest that in subjects with RRMS, LAG-3 retains its ability to suppress T cell proliferation. However, LAG-3 expression was associated with the expression of markers of apoptosis, indicating a role for low LAG-3 in T cell resistance to cell death. In T cells from subjects with RRMS, we observed a global dysregulation of LAG-3 expression stemming from decreased transcription and persisting after T cell stimulation. These findings further support the potential clinical benefits of a LAG-3 agonist in the treatment of human autoimmunity.


Subject(s)
Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Diabetes Mellitus, Type 1/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Apoptosis/physiology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/physiology , Gene Expression Regulation/genetics , Humans , Lymphocyte Activation/immunology , RNA, Messenger/biosynthesis , Lymphocyte Activation Gene 3 Protein
5.
Kidney Int ; 98(3): 744-757, 2020 09.
Article in English | MEDLINE | ID: mdl-32446935

ABSTRACT

ANCA vasculitis is an autoimmune disease with increased expression of the autoantigen genes, myeloperoxidase (MPO) and proteinase 3 (PRTN3), but the origin and significance of expression is less distinct. To clarify this, we measured MPO and PRTN3 messenger RNA in monocytes, normal-density neutrophils, and in enriched leukocytes from peripheral blood mononuclear cells. Increased autoantigen gene expression was detected in normal-density neutrophils and enriched leukocytes from patients during active disease compared to healthy individuals, with the largest difference in enriched leukocytes. RNA-seq of enriched leukocytes comparing active-remission pairs identified a gene signature for low-density neutrophils. Cell sorting revealed low-density neutrophils contained mature and immature neutrophils depending on the presence or absence of CD10. Both populations contributed to autoantigen expression but the frequency of immature cells in low-density neutrophils did not correlate with low-density neutrophil MPO or PRTN3 expression. Low-density neutrophils were refractory to MPO-ANCA induced oxidative burst, suggesting an alternative role for low-density neutrophils in ANCA vasculitis pathogenesis. In contrast, normal-density neutrophils were activated by MPO-ANCA and monoclonal anti-PR3 antibody. Normal-density neutrophil activation correlated with MPO and PRTN3 mRNA. Increased autoantigen gene expression originating from the mature low-density and normal-density neutrophils suggests transcriptional dysregulation is a hallmark of ANCA vasculitis. Thus, the correlation between autoantigen gene expression and antibody-mediated normal-density neutrophil activation connects autoantigen gene expression with disease pathogenesis.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Neutrophils , Autoantigens/genetics , Gene Expression , Humans , Leukocytes, Mononuclear , Myeloblastin , Neutrophil Activation , Peroxidase/genetics
6.
Curr Opin Immunol ; 55: 9-14, 2018 12.
Article in English | MEDLINE | ID: mdl-30248523

ABSTRACT

IL-6 is implicated in the development and progression of autoimmune diseases in part by influencing CD4 T cell lineage and regulation. Elevated IL-6 levels drive inflammation in a wide range of autoimmune diseases, some of which are also characterized by enhanced T cell responses to IL-6. Notably, the impact of IL-6 on inflammation is contextual in nature and dependent on the cell type, cytokine milieu and tissue. Targeting the IL-6/IL-6R axis in humans has been shown to successfully ameliorate a subset of autoimmune conditions. In this review, we discuss recent studies investigating how IL-6 regulates the CD4 T cell response in the context of autoimmune disease and highlight how blocking different aspects of the IL-6 pathway is advantageous in the treatment of disease.


Subject(s)
Autoimmunity/immunology , Interleukin-6/immunology , Animals , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Humans , Inflammation/immunology
7.
J Am Soc Nephrol ; 28(4): 1175-1187, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27821628

ABSTRACT

ANCA-associated vasculitis is an autoimmune condition characterized by vascular inflammation and organ damage. Pharmacologically induced remission of this condition is complicated by relapses. Potential triggers of relapse are immunologic challenges and environmental insults, both of which associate with changes in epigenetic silencing modifications. Altered histone modifications implicated in gene silencing associate with aberrant autoantigen expression. To establish a link between DNA methylation, a model epigenetic gene silencing modification, and autoantigen gene expression and disease status in ANCA-associated vasculitis, we measured gene-specific DNA methylation of the autoantigen genes myeloperoxidase (MPO) and proteinase 3 (PRTN3) in leukocytes of patients with ANCA-associated vasculitis observed longitudinally (n=82) and of healthy controls (n=32). Patients with active disease demonstrated hypomethylation of MPO and PRTN3 and increased expression of the autoantigens; in remission, DNA methylation generally increased. Longitudinal analysis revealed that patients with ANCA-associated vasculitis could be divided into two groups, on the basis of whether DNA methylation increased or decreased from active disease to remission. In patients with increased DNA methylation, MPO and PRTN3 expression correlated with DNA methylation. Kaplan-Meier estimate of relapse revealed patients with increased DNA methylation at the PRTN3 promoter had a significantly greater probability of a relapse-free period (P<0.001), independent of ANCA serotype. Patients with decreased DNA methylation at the PRTN3 promoter had a greater risk of relapse (hazard ratio, 4.55; 95% confidence interval, 2.09 to 9.91). Thus, changes in the DNA methylation status of the PRTN3 promoter may predict the likelihood of stable remission and explain autoantigen gene regulation.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Autoantigens/genetics , DNA Methylation , Myeloblastin/genetics , Peroxidase/genetics , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Prognosis , Remission Induction
8.
Clin Epigenetics ; 8: 85, 2016.
Article in English | MEDLINE | ID: mdl-27752292

ABSTRACT

BACKGROUND: Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by destructive vascular inflammation. Two prominent ANCA autoantigens are myeloperoxidase (MPO) and proteinase 3 (PR3), and transcription of MPO and PRTN3, the genes encoding the autoantigens, is associated with disease activity. We investigated whether patients with AAV have alterations in histone modifications, particularly those associated with transcriptional activation, at MPO and PRTN3. RESULTS: We identified a network of genes regulating histone modifications that were differentially expressed in AAV patients compared to healthy controls. We focused on four genes (EHMT1 and EHMT2, ING4, and MSL1) and found their expression correlated with expression of MPO and PRTN3. Methylation of histone H3K9, catalyzed by EHMT1 and EHMT2 and associated with gene silencing, was most depleted at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Acetylation of histone H4K16, modified by complexes containing ING4 and MSL1 and associated with gene activation, was most enriched at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Methylation at H3K4, a mark of transcriptional activation, was enriched at MPO and PRTN3 in patients and healthy controls. CONCLUSIONS: MPO and PRTN3 in neutrophils of AAV patients with active disease have a distinct pattern of histone modifications, which implicates epigenetic mechanisms in regulating expression of autoantigen genes and suggests that the epigenome may be involved in AAV pathogenesis.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Gene Regulatory Networks , Histones/metabolism , Myeloblastin/genetics , Peroxidase/genetics , Acylation , Epigenesis, Genetic , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Methylation , Oligonucleotide Array Sequence Analysis/methods
9.
Arthritis Rheum ; 65(7): 1922-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23553415

ABSTRACT

OBJECTIVE: The development of pathogenic antineutrophil cytoplasmic antibodies (ANCAs) can result in systemic small vessel vasculitis. However, the breakdown in immune tolerance that results in the induction and persistence of ANCAs is not well understood. We undertook this study to test our hypothesis that abnormal T cell regulation is central to disease pathogenesis in patients with ANCA-associated vasculitis (AAV). METHODS: Peripheral blood samples were obtained from 62 patients with AAV and 19 healthy controls for flow cytometric analysis of CD4+ T cell populations. Functional T cell studies were performed with fluorescence-activated cell sorted CD4+ T cell populations stimulated with anti-CD3/anti-CD28. RESULTS: We demonstrated two separate abnormalities in T cell regulation in patients with AAV. First, we showed that the Treg cell frequency was increased in the peripheral blood of patients with active disease, but Treg cells from patients with AAV had decreased suppressive function. Treg cells from patients with active disease disproportionately used a FoxP3 isoform lacking exon 2, which might alter Treg cell function. Second, we identified a CD4+ T cell population with increased frequency that was resistant to Treg cell suppression, produced proinflammatory cytokines, and was antigen experienced. CONCLUSION: AAV is associated with disruption of the suppressive Treg cell network and with increased frequency of a distinct proinflammatory effector T cell subset that comprises the majority of peripheral CD4+ T cells.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Female , Flow Cytometry , Forkhead Transcription Factors/immunology , Humans , Immune Tolerance , Male , Middle Aged , Protein Isoforms/immunology , T-Lymphocyte Subsets/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...